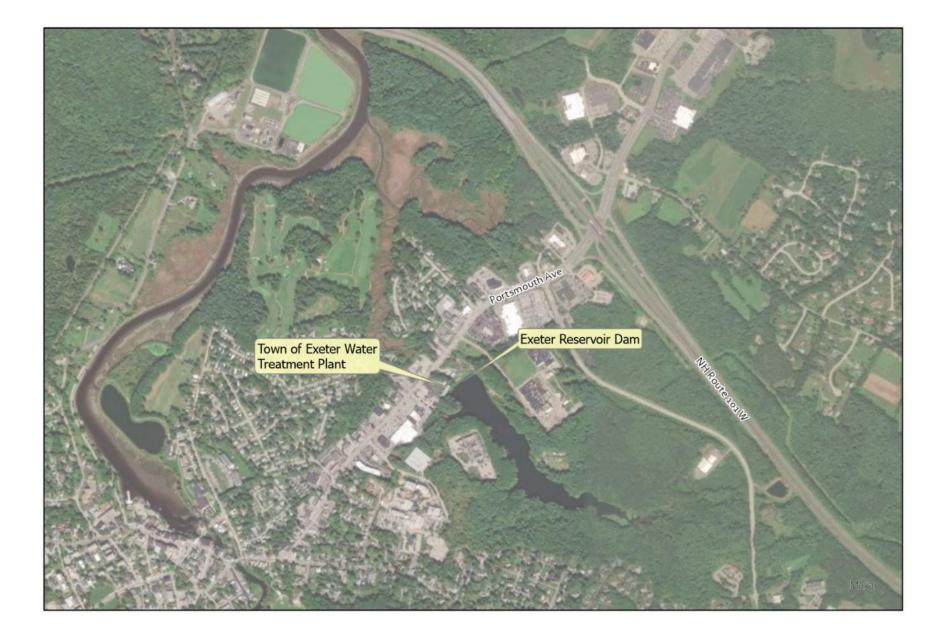


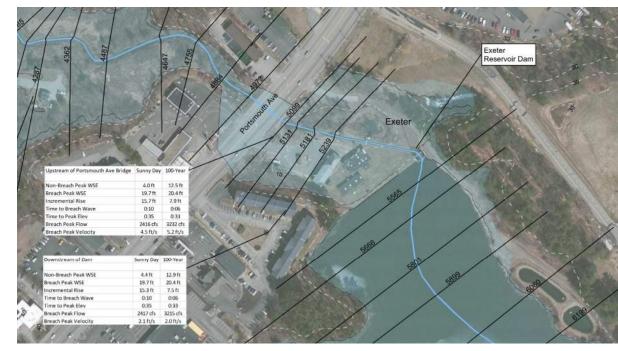
Exeter Reservoir Dam Feasibility Study

Project Update #1

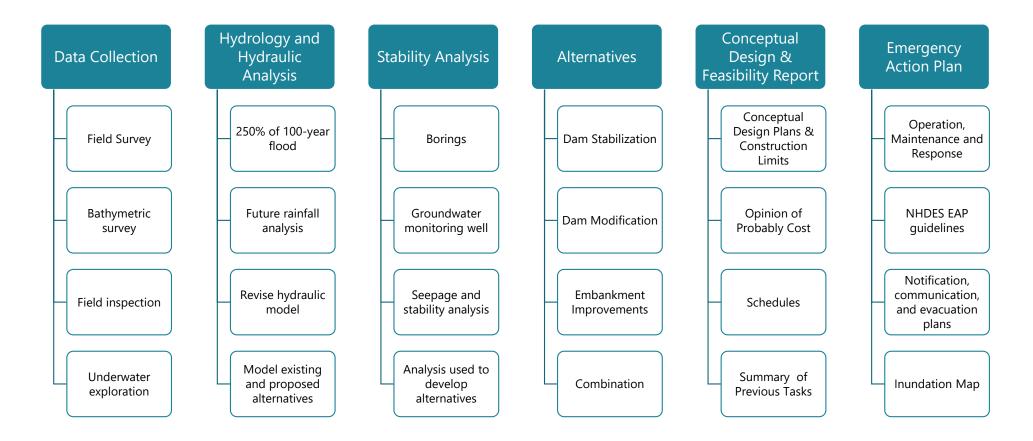


Presented By

Jacob San Antonio, PE VHB Project Manager & Chief Engineer


Exeter Reservoir Dam

- Commonly known as Water Works Dam
- Concrete face earth fill dam, 15' high and 248' long
- Spillway that leads into 8' wide and 220' long sluiceway
- High Hazard & Poor Condition
- Impounds Dearborn Brook and water pumped from Exeter River
- Contributing area 1.75 square miles
- Provides drinking water to 4,500 customers
- WTP downstream of dam



Background

- Pickpocket Dam Letter of Deficiency requesting Breach Analysis
 - Exeter Reservoir only had simplified Breach Analysis
- Breach Analysis confirmed High-Hazard Classification
 - Overtops Portsmouth Avenue
 - Flood heights greater than 1' on 1st floor of 3 residences and water treatment plan (4,500 customers)
 - Feasibility Study to evaluate alternatives to bring dam into compliance

Scope of Work

Preliminary Results of Stability Analysis

- Investigation in November 2023 & June 2024
- Embedment depth of steel sheet pile cutoff wall extending should be sufficient, calculations are in process
 - Embankment Fill: 7-8' below crest, loose to medium dense sand with some silt
 - Native Soil: Extending ~35' below crest, medium to stiff clay
 - Below Native Soils: ~41' below crest, glacial till
- Upstream concrete wall is stable
- Slop stability factors of safety are acceptable, other than seismic loading conditions

Hydrologic Analysis

- Revised watershed boundaries in 2016 hydrologic HEC-HMS model
- Incorporated future rainfall analysis

STEP 6 TABLE. APPROACH FOR CALCULATING PROJECTED EXTREME PRECIPITATION ESTIMATES BASED ON TOLERANCE FOR FLOOD RISK.

	HIGH	MEDIUM	LOW	VERY LOW		
	TOLERANCE FOR FLOOD R5K	TOLERANCE FOR FLOOD RISK	TOLERANCE FOR FLOOD RISK	TOLERANCE FOR FLOOD HISK		
PROJECTED EXTREME PRECIPITATION ESTIMATE =	(Best available preci	pitation data) x (1.15)	(Best available precip	itation data) x (>1.15)		

 Evaluated 1000-year event for NHDES rulemaking for Env-Wr 100-700

Design Storm	Peak Discharge (cfs)									
2-year, 24-hr	90									
25-year, 24-hr	300									
50-year, 24-hr	600									
100-year, 24-hr	900									
200-year, 24-hr	1,300									
500-year, 24-hr	1,700									
1000-year, 24-hr	2,100									
Future 100-year, 24-hr	1,300									
Future 200-year, 24-hr	1,700									
Future 500-year, 24-hr	2,100									
Future 1000-year, 24-hr	2,500									
250% of 100-year, 24-hr	2,300									
250% of Future 100-year, 24-hr	3,300									

Hydraulic Analysis

- Incorporated topographic and bathymetric survey data into HEC-RAS hydraulic model
- Tide elevation of 3.29 as downstream tailwater condition
- Current Spillway Capacity (top): 84 cfs
- Required Spillway Capacity: 2,300 cfs

Schedule

		2023						2024												
		Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Task 1	Data Collection																			
Task 2	Hydrologic & Hydraulic Analysis																			
Task 3	Dam Embankment Stability Analysis																			
Task 4	Alternatives Analysis																			
Task 5	Conceptual Design & Feasibility Report																			
Task 6	EAP & OMR Form Update																			
Task 7	Meetings & Project Management																			

Questions?

